User: Guest
Space Power Electronics

A Global Strategic Business Report

MCP33020

RESEARCH DASHBOARD

OCT 2025

RELEASE DATE

7147

EXECUTIVE POOL

5850

PRICE

816

EXPERT INPUTS

47

COMPANIES

72

DATA TABLES

149

PAGES

2

EDITION
WHAT'S BEHIND OUR DATA?

140857226

DOMAIN TRANSCRIPTS

6080276

BRANDS TRACKED

1729341

FEATURED COMPANIES

22574

TOPICS COVERED

82719

MARKET SEGMENTS

91

KEY INDUSTRIES

1574

CURATION TEAM

4761909

DECISION MAKERS
EXECUTIVE ENGAGEMENTS BY TIER (55)

3

CXO

5

VICE PRESIDENT

10

DIRECTOR

25

MANAGER

12

MARKETING
REQUEST FULL-STACK INDEX Includes 350+ pages validated sources
QUESTIONNAIRE EXECUTIVES DATA ROOM
  

HIGHLIGHTS & REPORT INDEX

Global Space Power Electronics Market to Reach US$932.7 Million by 2030

The global market for Space Power Electronics estimated at US$347.3 Million in the year 2024, is expected to reach US$932.7 Million by 2030, growing at a CAGR of 17.9% over the analysis period 2024-2030. Power Discrete, one of the segments analyzed in the report, is expected to record a 19.3% CAGR and reach US$654.9 Million by the end of the analysis period. Growth in the Power Module segment is estimated at 14.7% CAGR over the analysis period.

The U.S. Market is Estimated at US$91.3 Million While China is Forecast to Grow at 16.8% CAGR

The Space Power Electronics market in the U.S. is estimated at US$91.3 Million in the year 2024. China, the world`s second largest economy, is forecast to reach a projected market size of US$143.1 Million by the year 2030 trailing a CAGR of 16.8% over the analysis period 2024-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 16.7% and 15.3% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 13.0% CAGR.

Global Space Power Electronics Market – Key Trends & Drivers Summarized

Why Is Power Electronics Emerging as the Backbone of Space Systems?

As spacecraft systems become more complex, autonomous, and interconnected, the demand for efficient and robust power management has placed space power electronics at the heart of mission design and reliability. Power electronics are responsible for regulating, conditioning, and converting electrical power within satellites, space probes, rovers, and orbital infrastructure. They ensure the stable distribution of energy from onboard power sources like solar panels or batteries to mission-critical subsystems including propulsion, communication, thermal regulation, navigation, and payload operations. In both low Earth orbit and deep-space missions, precise power control is essential to handle fluctuations in energy input, load balancing, and the protection of sensitive electronics. The shift toward all-electric satellites, high-throughput communication systems, and miniaturized platforms has made it imperative to deploy power electronics that are not only lightweight and compact but also highly efficient under radiation, vacuum, and thermal extremes. In modern satellites, the importance of autonomous fault tolerance and real-time energy allocation has grown considerably, placing new performance demands on power conversion modules, regulators, and distribution units. As spacecraft continue to operate further from Earth and for longer durations, dependable and smart power electronics have become mission enablers, not just supporting systems but acting as foundational infrastructure.

How Are Material Innovation and System Integration Shaping the Next Generation of Space Power Electronics?

The design and performance of power electronic components for space applications have evolved significantly with the adoption of advanced semiconductor materials and modular system architecture. Silicon carbide and gallium nitride have become increasingly prominent as alternatives to conventional silicon components due to their ability to operate at higher voltages, temperatures, and frequencies while significantly reducing switching losses. These wide bandgap materials enable more compact and thermally efficient designs, which are crucial for reducing size, weight, and power requirements in space missions. Moreover, advanced packaging techniques such as chip-scale integration, hermetic sealing, and radiation shielding are helping components withstand extreme space conditions. Beyond hardware, the integration of digital control systems and telemetry interfaces has improved the adaptability of power electronics, allowing them to respond to dynamic mission conditions and subsystem demands. Intelligent fault detection and isolation, self-diagnostics, and predictive health monitoring are now key features embedded into power management units, contributing to mission resilience. In addition, developments in high-efficiency DC-DC converters, power distribution units, and point-of-load regulators are allowing seamless energy flow across multiple voltage domains. With increasingly software-defined spacecraft architectures, power electronics are also being designed to support reconfiguration, redundancy switching, and power prioritization based on mission-critical functions, enhancing their strategic value within space platforms.

Where Is Market Demand Accelerating, and Which Applications Are Leading the Shift?

Market demand for space power electronics is surging across a wide range of applications as space becomes more commercialized, competitive, and technically ambitious. In low Earth orbit, the deployment of large satellite constellations for global broadband, Earth observation, and IoT services is driving demand for compact, reliable, and scalable power electronics capable of managing high-density power systems in small satellites and CubeSats. In geostationary platforms, where satellites carry large payloads and operate over long durations, power systems must offer ultra-high efficiency and redundancy to ensure uninterrupted service and long-term reliability. Deep-space exploration missions such as Mars rovers, asteroid probes, and lunar landers demand radiation-hardened, fault-tolerant power electronics that can operate autonomously with minimal input from Earth. Emerging defense applications including surveillance, missile early warning, and secure communications are prioritizing cyber-secure, low-latency power systems with embedded encryption and system-level resilience. Furthermore, the growing interest in orbital infrastructure such as in-space manufacturing, satellite servicing, and space stations is introducing a new layer of complexity in power distribution and energy storage. Electric propulsion systems, which are rapidly replacing traditional chemical engines in many missions, are another key driver for high-voltage and high-efficiency power electronics. This diversity of end-use applications is expanding the market from highly customized legacy components to more standardized, high-volume production models that serve both government and commercial missions.

What Is Powering the Long-term Growth of the Space Power Electronics Market?

The growth in the space power electronics market is driven by several factors directly related to evolving mission demands, satellite design transformation, component innovation, and broader shifts in the space economy. One of the most critical drivers is the transition from analog, passive systems to digital, intelligent platforms that require real-time power control, autonomous fault management, and enhanced energy efficiency. The proliferation of small satellites and CubeSats, especially for Earth observation and communications, is pushing for miniaturized, lightweight power solutions that do not compromise on reliability or thermal performance. The rise of electric propulsion, solar-electric spacecraft, and modular space habitats is creating demand for high-voltage switching, current management, and advanced thermal dissipation capabilities. Technological advancements in wide bandgap semiconductors are enabling higher power density and greater radiation tolerance, lowering the cost and complexity of system shielding. In parallel, the increasing number of government-funded space exploration initiatives and private investments in satellite-based services are fostering long-term procurement contracts for space-grade electronic systems. Geopolitical shifts and defense modernization are also influencing growth, with national security-focused missions emphasizing secure, redundant power architectures. Finally, the growing push toward sustainability in space, including satellite recycling, extended mission durations, and orbital servicing, is reinforcing the importance of reconfigurable and upgradable power systems. These converging trends are positioning power electronics not just as a subsystem, but as a strategic foundation for the next generation of space exploration, communication, and infrastructure development.

SCOPE OF STUDY

The report analyzes the Space Power Electronics market by the following Segments, and Geographic Regions/Countries:

Segments:

Device Type (Power Discrete, Power Module, Power IC); Application (Satellites Application, Spacecraft & Launch Vehicles Application, Space Stations Application, Rovers Application).

Geographic Regions/Countries:

World; United States; Canada; Japan; China; Europe (France; Germany; Italy; United Kingdom; and Rest of Europe); Asia-Pacific; Rest of World..

SELECT PLAYERS

Airbus Defence and Space; Analog Devices Inc.; BAE Systems plc; Cobham Limited; Efficient Power Conversion Corporation (EPC); HEICO Corporation; Honeywell International Inc.; Infineon Technologies AG; Microchip Technology Inc.; Mitsubishi Electric Corporation; ON Semiconductor (onsemi); Packet Digital LLC; Renesas Electronics Corporation; RUAG Group; Safran S.A.; STMicroelectronics N.V.; Teledyne Technologies Incorporated; Texas Instruments Incorporated; Toshiba Corporation; TT Electronics plc;

AI INTEGRATIONS

We’re transforming market and competitive intelligence with validated expert content and AI tools.

Instead of following the general norm of querying LLMs and Industry-specific SLMs, we built repositories of content curated from domain experts worldwide including video transcripts, blogs, search engines research, and massive amounts of enterprise, product/service, and market data.

TARIFF IMPACT FACTOR

Our new release incorporates impact of tariffs on geographical markets as we predict a shift in competitiveness of companies based on HQ country, manufacturing base, exports and imports (finished goods and OEM). This intricate and multifaceted market reality will impact competitors by increasing the Cost of Goods Sold (COGS), reducing profitability, reconfiguring supply chains, amongst other micro and macro market dynamics.

TABLE OF CONTENTS

1. MARKET OVERVIEW
Trade Shocks, Uncertainty, and the Structural Rewiring of the Global Economy
How Trump’s Tariffs Impact the Market? The Big Question on Everyone’s Mind
Space Power Electronics – Global Key Competitors Percentage Market Share in 2025 (E)
Competitive Market Presence - Strong/Active/Niche/Trivial for 47 Players Worldwide in 2025 (E)
2. FOCUS ON SELECT PLAYERS
3. MARKET TRENDS & DRIVERS
Surging Satellite Deployment Rates Throw the Spotlight on High-reliability Power Electronics for Space Applications
Shift Toward All-electric Propulsion Systems Spurs Demand for Efficient Power Conditioning and Distribution Modules
Here`s How the Growth of SmallSats and CubeSats Expands the Addressable Market for Miniaturized Space Power Electronics
Proliferation of LEO Mega-constellations Strengthens the Business Case for Low-cost, Radiation-hardened Power Components
Rising Energy Demands of Payloads and On-board AI Systems Propel Innovation in Thermal and Power Management Solutions
Here`s the Story: Next-gen Scientific and Exploration Missions Drive Adoption of Ultra-efficient Power Conversion Architectures
Emergence of Modular and Scalable Bus Designs Generates Opportunities for Standardized Power Electronics Platforms
Advancements in Wide Bandgap Semiconductors Sustain Growth in GaN and SiC-based Power Electronic Devices for Space
Increased Focus on SWaP-C Optimization Drives Design of Lightweight, High-density Power Supply Units
Demand for Real-time Telemetry and Remote Diagnostics Drives Integration of Intelligent Power Monitoring Systems
Extreme Temperature Variability and Radiation Exposure Pose Enduring Design Challenges for Space-grade Power Electronics
4. GLOBAL MARKET PERSPECTIVE
World Space Power Electronics Market Analysis of Annual Sales in US$ Thousand for Years 2015 through 2030
World Recent Past, Current & Future Analysis for Space Power Electronics by Geographic Region - USA, Canada, Japan, China, Europe, Asia-Pacific and Rest of World Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2024 through 2030 and % CAGR
World 6-Year Perspective for Space Power Electronics by Geographic Region - Percentage Breakdown of Value Sales for USA, Canada, Japan, China, Europe, Asia-Pacific and Rest of World Markets for Years 2025 & 2030
World Recent Past, Current & Future Analysis for Power Discrete by Geographic Region - USA, Canada, Japan, China, Europe, Asia-Pacific and Rest of World Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2024 through 2030 and % CAGR
World 6-Year Perspective for Power Discrete by Geographic Region - Percentage Breakdown of Value Sales for USA, Canada, Japan, China, Europe, Asia-Pacific and Rest of World for Years 2025 & 2030
World Recent Past, Current & Future Analysis for Power Module by Geographic Region - USA, Canada, Japan, China, Europe, Asia-Pacific and Rest of World Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2024 through 2030 and % CAGR
World 6-Year Perspective for Power Module by Geographic Region - Percentage Breakdown of Value Sales for USA, Canada, Japan, China, Europe, Asia-Pacific and Rest of World for Years 2025 & 2030
World Recent Past, Current & Future Analysis for Power IC by Geographic Region - USA, Canada, Japan, China, Europe, Asia-Pacific and Rest of World Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2024 through 2030 and % CAGR
World 6-Year Perspective for Power IC by Geographic Region - Percentage Breakdown of Value Sales for USA, Canada, Japan, China, Europe, Asia-Pacific and Rest of World for Years 2025 & 2030
World Recent Past, Current & Future Analysis for Satellites Application by Geographic Region - USA, Canada, Japan, China, Europe, Asia-Pacific and Rest of World Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2024 through 2030 and % CAGR
World 6-Year Perspective for Satellites Application by Geographic Region - Percentage Breakdown of Value Sales for USA, Canada, Japan, China, Europe, Asia-Pacific and Rest of World for Years 2025 & 2030
World Recent Past, Current & Future Analysis for Spacecraft & Launch Vehicles Application by Geographic Region - USA, Canada, Japan, China, Europe, Asia-Pacific and Rest of World Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2024 through 2030 and % CAGR
World 6-Year Perspective for Spacecraft & Launch Vehicles Application by Geographic Region - Percentage Breakdown of Value Sales for USA, Canada, Japan, China, Europe, Asia-Pacific and Rest of World for Years 2025 & 2030
World Recent Past, Current & Future Analysis for Space Stations Application by Geographic Region - USA, Canada, Japan, China, Europe, Asia-Pacific and Rest of World Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2024 through 2030 and % CAGR
World 6-Year Perspective for Space Stations Application by Geographic Region - Percentage Breakdown of Value Sales for USA, Canada, Japan, China, Europe, Asia-Pacific and Rest of World for Years 2025 & 2030
World Recent Past, Current & Future Analysis for Rovers Application by Geographic Region - USA, Canada, Japan, China, Europe, Asia-Pacific and Rest of World Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2024 through 2030 and % CAGR
World 6-Year Perspective for Rovers Application by Geographic Region - Percentage Breakdown of Value Sales for USA, Canada, Japan, China, Europe, Asia-Pacific and Rest of World for Years 2025 & 2030
UNITED STATES
Space Power Electronics Market Presence - Strong/Active/Niche/Trivial - Key Competitors in the United States for 2025 (E)
USA Recent Past, Current & Future Analysis for Space Power Electronics by Device Type - Power Discrete, Power Module and Power IC - Independent Analysis of Annual Sales in US$ Thousand for the Years 2024 through 2030 and % CAGR
USA 6-Year Perspective for Space Power Electronics by Device Type - Percentage Breakdown of Value Sales for Power Discrete, Power Module and Power IC for the Years 2025 & 2030
USA Recent Past, Current & Future Analysis for Space Power Electronics by Application - Satellites Application, Spacecraft & Launch Vehicles Application, Space Stations Application and Rovers Application - Independent Analysis of Annual Sales in US$ Thousand for the Years 2024 through 2030 and % CAGR
USA 6-Year Perspective for Space Power Electronics by Application - Percentage Breakdown of Value Sales for Satellites Application, Spacecraft & Launch Vehicles Application, Space Stations Application and Rovers Application for the Years 2025 & 2030
CANADA
Canada Recent Past, Current & Future Analysis for Space Power Electronics by Device Type - Power Discrete, Power Module and Power IC - Independent Analysis of Annual Sales in US$ Thousand for the Years 2024 through 2030 and % CAGR
Canada 6-Year Perspective for Space Power Electronics by Device Type - Percentage Breakdown of Value Sales for Power Discrete, Power Module and Power IC for the Years 2025 & 2030
Canada Recent Past, Current & Future Analysis for Space Power Electronics by Application - Satellites Application, Spacecraft & Launch Vehicles Application, Space Stations Application and Rovers Application - Independent Analysis of Annual Sales in US$ Thousand for the Years 2024 through 2030 and % CAGR
Canada 6-Year Perspective for Space Power Electronics by Application - Percentage Breakdown of Value Sales for Satellites Application, Spacecraft & Launch Vehicles Application, Space Stations Application and Rovers Application for the Years 2025 & 2030
JAPAN
Space Power Electronics Market Presence - Strong/Active/Niche/Trivial - Key Competitors in Japan for 2025 (E)
Japan Recent Past, Current & Future Analysis for Space Power Electronics by Device Type - Power Discrete, Power Module and Power IC - Independent Analysis of Annual Sales in US$ Thousand for the Years 2024 through 2030 and % CAGR
Japan 6-Year Perspective for Space Power Electronics by Device Type - Percentage Breakdown of Value Sales for Power Discrete, Power Module and Power IC for the Years 2025 & 2030
Japan Recent Past, Current & Future Analysis for Space Power Electronics by Application - Satellites Application, Spacecraft & Launch Vehicles Application, Space Stations Application and Rovers Application - Independent Analysis of Annual Sales in US$ Thousand for the Years 2024 through 2030 and % CAGR
Japan 6-Year Perspective for Space Power Electronics by Application - Percentage Breakdown of Value Sales for Satellites Application, Spacecraft & Launch Vehicles Application, Space Stations Application and Rovers Application for the Years 2025 & 2030
CHINA
Space Power Electronics Market Presence - Strong/Active/Niche/Trivial - Key Competitors in China for 2025 (E)
China Recent Past, Current & Future Analysis for Space Power Electronics by Device Type - Power Discrete, Power Module and Power IC - Independent Analysis of Annual Sales in US$ Thousand for the Years 2024 through 2030 and % CAGR
China 6-Year Perspective for Space Power Electronics by Device Type - Percentage Breakdown of Value Sales for Power Discrete, Power Module and Power IC for the Years 2025 & 2030
China Recent Past, Current & Future Analysis for Space Power Electronics by Application - Satellites Application, Spacecraft & Launch Vehicles Application, Space Stations Application and Rovers Application - Independent Analysis of Annual Sales in US$ Thousand for the Years 2024 through 2030 and % CAGR
China 6-Year Perspective for Space Power Electronics by Application - Percentage Breakdown of Value Sales for Satellites Application, Spacecraft & Launch Vehicles Application, Space Stations Application and Rovers Application for the Years 2025 & 2030
EUROPE
Space Power Electronics Market Presence - Strong/Active/Niche/Trivial - Key Competitors in Europe for 2025 (E)
Europe Recent Past, Current & Future Analysis for Space Power Electronics by Geographic Region - France, Germany, Italy, UK and Rest of Europe Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2024 through 2030 and % CAGR
Europe 6-Year Perspective for Space Power Electronics by Geographic Region - Percentage Breakdown of Value Sales for France, Germany, Italy, UK and Rest of Europe Markets for Years 2025 & 2030
Europe Recent Past, Current & Future Analysis for Space Power Electronics by Device Type - Power Discrete, Power Module and Power IC - Independent Analysis of Annual Sales in US$ Thousand for the Years 2024 through 2030 and % CAGR
Europe 6-Year Perspective for Space Power Electronics by Device Type - Percentage Breakdown of Value Sales for Power Discrete, Power Module and Power IC for the Years 2025 & 2030
Europe Recent Past, Current & Future Analysis for Space Power Electronics by Application - Satellites Application, Spacecraft & Launch Vehicles Application, Space Stations Application and Rovers Application - Independent Analysis of Annual Sales in US$ Thousand for the Years 2024 through 2030 and % CAGR
Europe 6-Year Perspective for Space Power Electronics by Application - Percentage Breakdown of Value Sales for Satellites Application, Spacecraft & Launch Vehicles Application, Space Stations Application and Rovers Application for the Years 2025 & 2030
FRANCE
Space Power Electronics Market Presence - Strong/Active/Niche/Trivial - Key Competitors in France for 2025 (E)
France Recent Past, Current & Future Analysis for Space Power Electronics by Device Type - Power Discrete, Power Module and Power IC - Independent Analysis of Annual Sales in US$ Thousand for the Years 2024 through 2030 and % CAGR
France 6-Year Perspective for Space Power Electronics by Device Type - Percentage Breakdown of Value Sales for Power Discrete, Power Module and Power IC for the Years 2025 & 2030
France Recent Past, Current & Future Analysis for Space Power Electronics by Application - Satellites Application, Spacecraft & Launch Vehicles Application, Space Stations Application and Rovers Application - Independent Analysis of Annual Sales in US$ Thousand for the Years 2024 through 2030 and % CAGR
France 6-Year Perspective for Space Power Electronics by Application - Percentage Breakdown of Value Sales for Satellites Application, Spacecraft & Launch Vehicles Application, Space Stations Application and Rovers Application for the Years 2025 & 2030
GERMANY
Space Power Electronics Market Presence - Strong/Active/Niche/Trivial - Key Competitors in Germany for 2025 (E)
Germany Recent Past, Current & Future Analysis for Space Power Electronics by Device Type - Power Discrete, Power Module and Power IC - Independent Analysis of Annual Sales in US$ Thousand for the Years 2024 through 2030 and % CAGR
Germany 6-Year Perspective for Space Power Electronics by Device Type - Percentage Breakdown of Value Sales for Power Discrete, Power Module and Power IC for the Years 2025 & 2030
Germany Recent Past, Current & Future Analysis for Space Power Electronics by Application - Satellites Application, Spacecraft & Launch Vehicles Application, Space Stations Application and Rovers Application - Independent Analysis of Annual Sales in US$ Thousand for the Years 2024 through 2030 and % CAGR
Germany 6-Year Perspective for Space Power Electronics by Application - Percentage Breakdown of Value Sales for Satellites Application, Spacecraft & Launch Vehicles Application, Space Stations Application and Rovers Application for the Years 2025 & 2030
ITALY
Italy Recent Past, Current & Future Analysis for Space Power Electronics by Device Type - Power Discrete, Power Module and Power IC - Independent Analysis of Annual Sales in US$ Thousand for the Years 2024 through 2030 and % CAGR
Italy 6-Year Perspective for Space Power Electronics by Device Type - Percentage Breakdown of Value Sales for Power Discrete, Power Module and Power IC for the Years 2025 & 2030
Italy Recent Past, Current & Future Analysis for Space Power Electronics by Application - Satellites Application, Spacecraft & Launch Vehicles Application, Space Stations Application and Rovers Application - Independent Analysis of Annual Sales in US$ Thousand for the Years 2024 through 2030 and % CAGR
Italy 6-Year Perspective for Space Power Electronics by Application - Percentage Breakdown of Value Sales for Satellites Application, Spacecraft & Launch Vehicles Application, Space Stations Application and Rovers Application for the Years 2025 & 2030
UNITED KINGDOM
Space Power Electronics Market Presence - Strong/Active/Niche/Trivial - Key Competitors in the United Kingdom for 2025 (E)
UK Recent Past, Current & Future Analysis for Space Power Electronics by Device Type - Power Discrete, Power Module and Power IC - Independent Analysis of Annual Sales in US$ Thousand for the Years 2024 through 2030 and % CAGR
UK 6-Year Perspective for Space Power Electronics by Device Type - Percentage Breakdown of Value Sales for Power Discrete, Power Module and Power IC for the Years 2025 & 2030
UK Recent Past, Current & Future Analysis for Space Power Electronics by Application - Satellites Application, Spacecraft & Launch Vehicles Application, Space Stations Application and Rovers Application - Independent Analysis of Annual Sales in US$ Thousand for the Years 2024 through 2030 and % CAGR
UK 6-Year Perspective for Space Power Electronics by Application - Percentage Breakdown of Value Sales for Satellites Application, Spacecraft & Launch Vehicles Application, Space Stations Application and Rovers Application for the Years 2025 & 2030
REST OF EUROPE
Rest of Europe Recent Past, Current & Future Analysis for Space Power Electronics by Device Type - Power Discrete, Power Module and Power IC - Independent Analysis of Annual Sales in US$ Thousand for the Years 2024 through 2030 and % CAGR
Rest of Europe 6-Year Perspective for Space Power Electronics by Device Type - Percentage Breakdown of Value Sales for Power Discrete, Power Module and Power IC for the Years 2025 & 2030
Rest of Europe Recent Past, Current & Future Analysis for Space Power Electronics by Application - Satellites Application, Spacecraft & Launch Vehicles Application, Space Stations Application and Rovers Application - Independent Analysis of Annual Sales in US$ Thousand for the Years 2024 through 2030 and % CAGR
Rest of Europe 6-Year Perspective for Space Power Electronics by Application - Percentage Breakdown of Value Sales for Satellites Application, Spacecraft & Launch Vehicles Application, Space Stations Application and Rovers Application for the Years 2025 & 2030
ASIA-PACIFIC
Space Power Electronics Market Presence - Strong/Active/Niche/Trivial - Key Competitors in Asia-Pacific for 2025 (E)
Asia-Pacific Recent Past, Current & Future Analysis for Space Power Electronics by Device Type - Power Discrete, Power Module and Power IC - Independent Analysis of Annual Sales in US$ Thousand for the Years 2024 through 2030 and % CAGR
Asia-Pacific 6-Year Perspective for Space Power Electronics by Device Type - Percentage Breakdown of Value Sales for Power Discrete, Power Module and Power IC for the Years 2025 & 2030
Asia-Pacific Recent Past, Current & Future Analysis for Space Power Electronics by Application - Satellites Application, Spacecraft & Launch Vehicles Application, Space Stations Application and Rovers Application - Independent Analysis of Annual Sales in US$ Thousand for the Years 2024 through 2030 and % CAGR
Asia-Pacific 6-Year Perspective for Space Power Electronics by Application - Percentage Breakdown of Value Sales for Satellites Application, Spacecraft & Launch Vehicles Application, Space Stations Application and Rovers Application for the Years 2025 & 2030
REST OF WORLD
Rest of World Recent Past, Current & Future Analysis for Space Power Electronics by Device Type - Power Discrete, Power Module and Power IC - Independent Analysis of Annual Sales in US$ Thousand for the Years 2024 through 2030 and % CAGR
Rest of World 6-Year Perspective for Space Power Electronics by Device Type - Percentage Breakdown of Value Sales for Power Discrete, Power Module and Power IC for the Years 2025 & 2030
Rest of World Recent Past, Current & Future Analysis for Space Power Electronics by Application - Satellites Application, Spacecraft & Launch Vehicles Application, Space Stations Application and Rovers Application - Independent Analysis of Annual Sales in US$ Thousand for the Years 2024 through 2030 and % CAGR
Rest of World 6-Year Perspective for Space Power Electronics by Application - Percentage Breakdown of Value Sales for Satellites Application, Spacecraft & Launch Vehicles Application, Space Stations Application and Rovers Application for the Years 2025 & 2030

COMPETITIVE METRICS

COMPETITORS (ALPHABETICAL)

%

VALIDATED RESEARCH *

* Login to Participate & View Data Stacks

* Participating executives must be from a competitive company. Executive credentials are validated by a one-time two-factor authentication, in compliance with GDPR guidelines. Verified executives have complimentary access to our proprietary MarketGlassTM platform and relevant data silos including Trend Data; Brand/IP/TM Feeds; and Market Size, Share & Rank Clusters. Qualified influencers are also invited to join our Expert Panels. Privileges include purchase credits, and collaborative bespoke builds.

View All Companies...

PREVIEW REPORT

YOUR PRIVACY MATTERS!

Our robust permission-based engagement strategy requires a one-time double opt-in and/or re-consent for all users. We will re-establish consent once a year from date of last use. Both these practices exceed GDPR mandates.

What we store: Primary coordinates such as email, company address and phone. In-house developed influencer rank.
How we store: Encrypted and additionally secured by firewalls.
How we use your data: Only to contact you directly. We never share your coordinates with any individual or entity outside our company for any reason.
Privacy queries: [email protected]

Scroll